

### MAYNOOTH UNIVERSITY ENGINEERING & COMPUTER SCIENCE INTERNATIONAL SUMMER SCHOOL

SYLLABI FOR CLASSES

\*\*PLEASE NOTE THAT ALL SYLLABI MAY BE SUBJECT TO SLIGHT CHANGE OR MODIFICATION\*\*

### **CONTENTS**

- 1. Electric Circuits (EE215SS)- Page 3
- 2. Algorithms & Data Structures (CS210SS)- Page 7
- 3. Software Design (CS264SS)- Page 9
- 4. System Dynamics (EE211SS)- Page 11
- 5. Digital Systems (EE216SS)- Page 13

# Electric Circuits Engineering EE215SS 5 ECTS Credits

| Module Name         | Electric Circuits 2                                 |
|---------------------|-----------------------------------------------------|
| Module Code         | EE215                                               |
|                     |                                                     |
|                     |                                                     |
| Module Co-ordinator | Refer to Excel document <i>Module_Co-ordinators</i> |
| Department          | Electronic Engineering                              |
|                     |                                                     |
| Module Level        | 2                                                   |
| Credit rating       | 5 ECTS credits                                      |
|                     |                                                     |
| Pre-requisites      | None                                                |
|                     |                                                     |

| Aims              | To provide an in-depth knowledge of RLC circuits and filter design.                                            |
|-------------------|----------------------------------------------------------------------------------------------------------------|
| Learning Outcomes | At the end of the course, the student should be able to:                                                       |
|                   | <ol> <li>Explain conceptually what resonance and bandwidth mean in<br/>the context of RLC networks.</li> </ol> |
|                   | <ol> <li>List and draw the frequency specifications of the four basic<br/>types of filters.</li> </ol>         |
|                   | 3. Draw a bode plot of a network function.                                                                     |
|                   | 4. Design and build a passive filter based on a Butterworth response.                                          |
|                   | 5. Use RLC circuits to modulate bandwidth and resonance as needed.                                             |
|                   | 6. Use Matlab to analysis signals with the appropriate filter hardware.                                        |
|                   | 7. Design, build and analysis a filter circuit in a lab environment.                                           |

| Time Allowance for Constituent Elements |          |
|-----------------------------------------|----------|
| Lectures                                | 24 hours |
| Tutorials                               | 10 hours |
| Tutorials                               | 10 hours |

| Laboratory and exam  | 21 hours |
|----------------------|----------|
| Class Test           | 2 hours  |
| Independent study    | 66 hours |
| Semester Examination | 2 hours  |
|                      |          |

#### **Indicative Syllabus**

- RLC resonance, bandwidth and Q-factor
- Passive filter design Low Pass, High Pass, Band stop and band pass filters
- RLC filter effects stage, Butterworth filters
- Bode plots
- Realisation of various filter specifications
- Stability of filter circuits
- Oscillators
- ADC and DAC circuitry

| Assessment Criteria  |     |
|----------------------|-----|
| Semester Examination | 60% |
| Laboratory (6)       | 15% |
| Laboratory Exam (1)  | 15% |
| Class Test (2)       | 10% |
|                      |     |

**Penalties:** Missed labs and class test cannot be repeated, in general.

**Pass Standard and any Special Requirements for Passing Modules**: The Pass Mark is 40% - students are not required to pass the written and continuous components separately.

**Supplemental Examination:** 1 x 2 hour written examination (Autumn). The continuous assessment mark is carried forward as there is no facility for repeating the continuous assessment elements of the course.

#### Assessment Philosophy

The class tests and examination paper are designed to cover learning outcomes 1-5. All questions in the class test are compulsory, while the final examination paper has a compulsory question that covers all aspects of the syllabus. The lab sessions cover learning outcomes 5 -7 and encourage teamwork.

It should be noted that the laboratory exam will be individually assessed in the form a different problem given to each student.

| Course Text | "Electromagnetics with Applications", Kraus and Fleisch, McGraw-Hill                                                                                    |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| References  | <ul> <li>"Engineering Electromagnetics", Hayt and Buck, McGraw-Hill</li> <li>"Electromagnetic Fields and Waves", Lorrain and Carson, Freeman</li> </ul> |

| Programmes currently utilising module | Compulsory |
|---------------------------------------|------------|
| BE in Electronic Engineering          | Yes        |
| BSc in Science (Engineering Science)  | Yes        |

# Algorithms & Data Structures I Computer Science CS210SS 5 ECTS Credits

#### Overview

Introduction to algorithms and data structures. Review of elementary programming concepts suitable for the implementation of abstract data types (operators, types and expressions; control of flow; methods; recursion; input & output); Algorithms for searching: linear, bounded linear and binary searches; Algorithms for sorting: selection, insertion, bubble and quick sorts; Fundamental linear data structures: stacks, queues, linked lists; Object-oriented programming: encapsulation and information hiding, classes, interfaces, class hierarchies, inheritance, polymorphism, basic exception handling; Analysis of basic algorithms.

#### Learning Outcomes

On successful completion of the module, students should be able to:

- Recognize the importance of program complexity
- Describe a variety of structures for storing data such as arrays, linked lists, stacks and queues
- Explain a range of algorithms involving searching and sorting
- Identify data structuring strategies appropriate to a given context
- Design, develop, test and debug object-oriented programs in Java
- Apply data structuring techniques to the design of computer programs

#### **Teaching & Learning Methods**

48 Lecture hours,

#### Assessment

50% for Continuous assessment exercises and 50% for a final written exam The Pass standard is 40%

## Software Design Computer Science CS264SS 5 ECTS Credits

#### Overview

In the course students will be introduced to principles and practices of object oriented software analysis, design, and programming using C++. The course will be delivered in two halves. The first half will focus on taking students from the basics of C++, through to objected oriented and generic programming. Topics covered will include (i) basic C++ syntax and program structure, (ii) primitive and abstract data-types, (iii) arrays, pointers, and dynamic memory management, (iv) object oriented programming (encapsulation, inheritance, polymorphism, etc.), and (v) generic programming and the STL. Note that the course assumes that students already have a good level of programming competency, but that they have not previously programmed in C++.

The second half will cover the general principles object oriented analysis and design (OOA/D) and in particular the application of design patterns in developing well-structured, extensible, and reusable software systems.

#### Learning Outcomes

On successful completion of the module, students should be able to:

- Analyze, design, and implement software based solutions to problems using C++.
- Understand and apply dynamic memory management programming techniques in C++.
- Develop generic implementations of algorithms in C++.
- Compare and contrast different software designs based on principled quality criteria.
- Apply OOA/D techniques to the development of software solutions to real-world problems.
- Implement a selection of design patterns in C++.
- Understand and apply a selection of design patterns in their software solutions.

#### **Teaching & Learning Methods**

24 Lecture hours, 24 Laboratory hours

#### Assessment

50% for Continuous assessment exercises and 50% for a final written exam The Pass standard is 40%

## System Dynamics Engineering EE211SS 5 ECTS Credits

### **Overview**

- To analyze a range of both continuous and discrete time systems.
- To introduce the concept of state-space.
- To introduce frequency-domain system analysis.
- To further the use of Matlab and Simulink in laboratories

See full module descriptor at <u>http://www.nuim.ie/electronic-engineering/current-</u> students/module-descriptors

### **Learning Outcomes**

On successful completion of the module, students should be able to:

- Develop mathematical models for a range of dynamical systems.
- Change between different mathematical model representations (differential equation, state-space and transfer function).
- Linearize a nonlinear system about an operating point.
- Calculate responses of simple dynamical systems.
- Analyze simple systems using Bode plots.
- 6. Use Matlab and Simulink to simulate and analyze a range of systems

## Digital Systems Engineering EE216SS 5 ECTS Credits

| Module name         | Digital Systems<br>EE216                            |
|---------------------|-----------------------------------------------------|
| & code              | 6 <sup>th</sup> March 2024                          |
| Revision Date       | Refer to Excel document <i>Module_Co-ordinators</i> |
| Module Co-ordinator | Electronic Engineering                              |
| Department          | 5 ECTS Credits                                      |
| Credit rating       | None                                                |
| Pre-requisites      |                                                     |

| Aims              | <ul> <li>To introduce students to the world of digital design.</li> <li>To equip students with the necessary skills to tackle real-world problems in the design of complex digital systems.</li> </ul>                                                                                                                                                                                                                                                                                                                                           |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning Outcomes | <ul> <li>At the end of this module, the student will be able to: <ol> <li>Perform basic Boolean algebra.</li> <li>Minimize logic using Karnaugh Maps.</li> <li>Implement a logic circuit using only NAND / NOR gates.</li> <li>Describe the operation of basic flip-flops.</li> <li>Design combinational logic circuits using multiplexers as universal logic modules.</li> <li>Analyze and design Finite State Machines.</li> <li>Explain the basic operation of Analogue to Digital and Digital to Analogue converters.</li> </ol> </li> </ul> |

| Time Allowance for Constituent Elements |          |  |
|-----------------------------------------|----------|--|
| Lectures / Tutorials                    | 34 hours |  |
| Class tests (2 x 1 hr)                  | 2 hours  |  |
| Laboratory (up to 5 x 3 hr)             | 15 hours |  |
| Independent study                       | 72 hours |  |
| Semester examination                    | 2 hours  |  |
|                                         |          |  |

#### Indicative Syllabus

- Binary numbers & Binary representation
- Boolean algebra
- Minimization using Karnaugh maps
- Sequential Logic SR, D, JK, T and Master-slave flipflops
- Finite State Machines Mealy and Moore machines
- Implementation using NAND and NOR functions
- Memory (ROM and RAM) and storage devices.
- Analogue to Digital and Digital to Analogue converters.
- Multiplexers Combinational logic design using Multiplexers/Decoders as Universal Logic Modules

#### Assessment Criteria

| Laboratory reports (5) | 10% |
|------------------------|-----|
| Class tests (2)        | 20% |

**Penalties:** Missed labs and class tests cannot be repeated, in general.

**Pass Standard and any Special Requirements for Passing Modules**: The Pass Mark is 40% - students are not required to pass the written and continuous components separately.

**Supplemental Examination**: 1 x 2 hour written examination (Autumn). The continuous assessment mark is carried forward as there is no facility for repeating the continuous assessment elements of the course.

#### Assessment Philosophy

The final examination and class tests are designed to assess all learning outcomes. All questions in all class tests are compulsory, while the examination paper has a compulsory question that covers all aspects of the syllabus. The laboratory covers learning outcomes 2 - 7 and also encourages teamwork.

| Course Text | • Mano, M. Morris, <i>Digital design</i> , (2nd ed.), Prentice-Hall, 1991.                                                                                                                                                                                                                                                      |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| References  | <ul> <li>Floyd, Thomas L., <i>Digital fundamentals</i>, (7th ed.), Prentice Hall, 1999.</li> <li>Carter, John W. <i>Digital Designing with Programmable Logic Devices</i>, Prentice Hall, 1997.</li> <li>Wakerly, John F. <i>Digital Design: Principles and Practices</i> (3<sup>rd</sup> ed.), Prentice Hall, 2001.</li> </ul> |

| Programmes currently utilising module   | Compulsory |
|-----------------------------------------|------------|
| BE in Electronic Engineering            | Yes        |
| BSc in Robotics and Intelligent Devices | Yes        |