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ABSTRACT

There are relatively few known demand systems that are theoretically satisfactory and
practically implementable.  This paper investigates building more complex demand systems
from simpler known ones by considering sums and products of basic utility functions, an
approach that does not seem to have been exploited previously in the literature.  Some of the
systems that result are interesting and usefully extend the range of available functions.  Even
the simpler systems that are not sufficiently flexible for the analysis of real world
consumption data may still be useful for applied general equilibrium studies and for
theoretical explication.  Although some systems, instead of being new, turn out to be
rediscoveries of already known ones, the way in which they arise as combinations of simple
components is of interest in itself in showing them as sub sets of wider classes.
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I INTRODUCTION

An indirect utility function ),( yU p , where p is a vector of prices and y is income, and the

demand equations derived from it through Roy's identity

y
U

p
Uq

i
i ∂

∂
∂
∂−= / , (1)

satisfy demand theory, or utility maximisation, provided ),( yU p meets stringent criteria.

These are that U be homogeneous of degree zero in income and prices (p), non-decreasing in

y, non-increasing in p, and convex or quasi-convex in p.  Then the demand equations satisfy

the required constraints of aggregation, homogeneity, Slutsky symmetry and negativity

utilities.  These criteria for the validity of indirect utility functions are very restrictive on the

choice of functional forms, even with restrictions placed on the parameters occurring in the

forms.  There are relatively few known functions U that satisfy validity conditions for all, or

even for all plausible values of prices and income and some of them are very basic.  This

paper investigates building more complex demand systems from simple known ones by

considering sums and products of basic utility functions.

The basic combination devices, which will be described in section II, are quite simple, but at

least as far as this author knows, they have not been exploited previously in the literature in

order to expand the range of valid demand systems.  Some of the simpler systems that result

and that will be described in section III, may not be as flexible as might be desired for the

analysis of real world survey or time series data on consumer expenditures on commodities.

However, they may still be useful for applied general equilibrium studies and for theoretical

explication.  Some more complex systems, to be derived in section IV, are more flexible and

perhaps usefully extend the range of available functions.  As might be expected, some

systems, instead of being new, turn out to be rediscoveries of already known ones.  However,

even the way in which they arise as combinations of simple components is of interest in itself

in showing them as sub sets of wider classes.
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II DEMAND EQUATIONS FROM SUMS AND PRODUCTS OF UTILITIES

Suppose we have two (indirect) utility functions 1U and 2U satisfying all validity criteria.

Then the criteria obviously apply to 21 UU +  (the sum of two quasi-convex functions is

quasi-convex or convex) and indeed to 21)1( UU λλ +− , where λ is a positive constant, and

corresponding demand systems can be derived.  Let ),(11 yww ii p=  and ),(22 yww ii p= be

the sets of demand equations, in budget share form, resulting from application of Roy's

identity to 1U and 2U respectively.  Then by applying (1) to 21)1( UU λλ +− and

simplifying, the demand equations corresponding to this sum of utilities turn out to be
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or the original individual demand formulae weighted by (apart from constants) the derivatives

of utilities with respect to income.  The sub-script s denotes the utilities were summed.

For the special case of utility functions of the form

1
1 P

yU = and
2

2 P
yU = , (3)

where 1P  and 2P  are price indices, the validity of utility functions reduces to the validity of

the price indices and it is then evident that the utility function

21)1( PP
yU

λλ +−
=

is also valid.  So we will be interested in the properties of the weighted sum of utility

functions
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Applying Roy's identity to this gives
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the individual demand formulae weighted (apart from constants) by the price indices, or the

reciprocals of the derivatives of utilities with respect to income.
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For functions of the form (3), the product of utilities λλ
2

1
1 UU − is a valid utility function1.

Applying (1) to this gives
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the individual demand formulae weighted by the elasticities of utilities with respect to

income.  The sub-script m denotes the utilities were multiplied.

                                                          
1 If the logs of utility functions were utility functions, then the fact that the sum of utilities gives a valid
utility would suffice for the product of utilities.  Convexity is the crucial property.  For functions of the
form (3), PyU logloglog −= .  Since P is a valid price index, it is concave in prices.  The log
function is concave and increasing, so Plog  is concave and therefore Ulog is convex.
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III SIMPLE HOMOTHETIC COMPONENT UTILITY FUNCTIONS

Three simple utility functions can be generated by dividing income by price indices

corresponding to (weighted) arithmetic, geometric and harmonic means.  They are

∑
=

jj
a p

yU
γ

, (6)

∏
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j
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respectively.  All satisfy validity conditions provided the ss ',' αγ and s'δ are positive with

.1=Σ jα   The corresponding demand equation systems are obtained by applying (1) and for

(6) this gives
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where q denotes quantity.  These are Leontief demands in that the ratios of quantities of

commodities are always in fixed proportions, irrespective of prices or income.  For the ith

commodity the own-price elasticity is aiw−  and the cross-price elasticity with respect to

price k is akw−  .  Note there is over-parameterisation in (9) as any one γ could be eliminated

by dividing it into numerator and denominator.  But the convention 1=Σ jγ  is more

compatible with the average price interpretation.  As is well known, application of  (1) to (7)

leads to the Bergson, or constant budget share, demands, igiw α= , with own-price elasticity

equalling minus one and cross-price elasticity zero.  Applying (1) to (8) gives

∑
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with own-price elasticity –2 + hiw and cross-price elasticity hkw .  As for (9), there is parameter

redundancy in (10) and a 1=Σ jδ  convention matches with a harmonic mean price index.

Other simple utility functions are easily written down, for example,
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which is valid if the s'φ are positive and which gives the demand equations
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with own-price elasticity 1-2 riw and cross-price elasticity rkw− .  Again a redundant

parameter can be accounted for by imposing 1=Σ jφ , which also permits interpretation of

the denominator of (12) as a price index.

Even with the four utility functions (6), (7), (8) and (11), there are quite a few potential

demand systems.  Taking the utility functions two at a time, there are six possibilities and the

three combination methods via (2), (4) and (5) makes eighteen demand systems.  But how

much more flexibility do they give?  With income appearing as simply as it does in the four

starting point utility functions, it is evident that not only have their demand systems unitary

income elasticities2, but so will the combination systems because the weights in (2), (4) and

(5) are functions of prices and not income.  So we are only considering greater flexibility in

response to price changes.  Taking as a first example the combination of (6) and (7) by (4),

gives the demand system
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which can be written as
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(14)

where the sp' denote means of prices (which are functions of parameters) with the subscript

denoting the type of mean.  By dividing numerator and denominator of (13) by λ−1 and

writing

ii γγ
λ

λ =
−1

it is possible to write (13) as

                                                          
2 A well known related characteristic of these basic demand systems is that they could have been
derived from additive direct utility functions, for example, jj qlogαΣ  in the case of constant budget

share demands, or jjq φ/2Σ  in the case of (12).
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This gets rid of λ and removes the need for any constraint on the s'γ , but although neater, it

destroys the interpretation of jj pγΣ  as an arithmetic mean price index.  However, the device

will be used in section IV.

For the demand system (9), corresponding to (6), all goods had to be price inelastic and for

the constant budget share model the elasticity had to be –1.  It is easily verified that for (14)

the price elasticity is

])1[(
)1(

)1(
agwsi
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so that price elastic goods are possible.  The cross-price elasticity with respect to price k is

])1[(
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so that cross-price elasticities with respect to k are not constant over commodities, unlike the

situation for (9) where they all equalled minus the budget share of good k.  So the weighted

sum of (6) and (7) does give a system with scope to represent a greater range of economic

behaviour.  Similar remarks apply to the sum and product combinations via (2) and (5), which

are

ag
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respectively.  For these two systems to become the same and also equal to (14) would require

ag pp = .  But as is well known, a geometric mean is always less than an arithmetic mean

unless all commodities have the same price.  Although the systems are distinct, they have an

evident similiarity – own price appears explicitly and linearly in all, while the other prices

(and own price) occur implicitly through the price indices.

The corresponding demand systems for combinations of (7) and (8) are
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respectively, where the harmonic mean is
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Again, equality of the systems requires hg pp = , but a harmonic mean is always less than a

geometric mean unless prices are equal.  So again the systems are distinct, with the similarity

that the reciprocal of own price appears explicitly and linearly in all three, while the other

prices feature only through the price indices.  As might be expected, the combinations display

more flexibility in price elasticities than their components did.  For example, for the demand

system (10), corresponding to (8), all goods had to be price elastic, but the combinations relax

this.  The demand systems for combinations of (7) and (8) can be obtained too and similar

comments apply.  The equations for a commodity are found to explicitly feature both own

price and its reciprocal, which has benefits for own-price flexibility, but other prices again

feature only through price indices.

Now consider the combination of utility functions (6) and (11), or demand systems (9) and

(12), via (4).  This leads to

rqa
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wsi pp
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w
λλ

φ
λγλ

+−

+−
=

)1(

)1(
2

, (16)

where rqp  denotes the root quadratic price index

As already mentioned, all the demand systems derived in this section, have unitary income

elasticity and this could be seen as a serious inflexibility.  So it is if we are trying to model

observed consumer demand.  However, it is often considered a desirable property in applied

general equilibrium studies, sometimes along with extreme parsimony in parameters.  For

.2∑ jj pφ
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example, if (16) is further simplified by taking niii /1== φγ , where n is the number of

commodities, we get (in quantity rather than budget share form) the single parameter system

])1[(

)1(

rqa

rq

i

wsi ppn
p
py

q
λλ

λλ

+−

+−
= , (17)

with ap  and rqp  now the simplest price mean and the square root of the simple mean of

squared prices.  But (17) is the new class of demand equations proposed by Datta and Dixon

(2000)3 for general equilibrium models, which they believe will also be useful in a variety of

other applications.  From the development here it is evident theirs is a sub-class of a much

wider one.  They see the 'linearity' in explicit own price4 in (17) as a particular virtue, but that

is not unique to their case.  The systems resulting from combinations of (6) and (11) via (2)

and (5), with the same imposition of niii /1== φγ ,

])1[(

])1[( 2

arq

i
rg

a

a

rq

si ppn

p
p
p

p
p

y
q

λλ

λλ

+−

+−
= and

a

i
rg

a

mi pn

p
p
p

y
q

])1[( 2λλ +−
=

share the property.  Nor are these the only ones.  The formulae given earlier for the demand

systems from combinations of (7) and (8), if written as equations for quantities rather than

budget shares, show that all three have the property.  Presumably too, there will be occasions

when more than a single parameter is desired, so that the more general formulae are

applicable.  Perhaps there may even be be situations where 'linearity' in the reciprocal of own

price may be desirable instead of, or as well as, 'linearity' in own price.  It is not implausible

to suspect there are other useful systems for use in general equilibrium modelling besides (17)

to be obtained from combinations of simple components systems.

                                                          
3 They use λ− instead of λ , defining it to be negative.  Of course, they prove the validity conditions
directly for their system rather than deducing them from the properties of components.
4 They argue, citing Dixit and Stiglitz (1977) that sometimes the non-linearity due to ip implicit in
price indices is unimportant.
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IV MORE COMPLEX COMPONENTS

In the previous section the combination of simple components with unitary income elasticities

generated demand systems also with unitary income elasticities.  This need not always be so.

Consider combining the two utility functions (7) and

y
p

U jjγΣ
−=12

Obviously, applying Roy's identity to 2U  must give the same result as applying it to (6), that

is the system (9).  The elasticity of 1U with respect to y is unity and that of 2U  is easily seen

to be

jj

i

py
y
γ

γ
Σ−

.

Combining via (5) and using the device discussed in the previous section when writing (13) as

(15), gives

y
p

p
p

y
py

w jj

jj

iijj
imi

γ
γ
γγ

α
Σ

Σ
+

Σ−
= , (18)

or

)( jjiiimii pypqp γαγ Σ−+=

which is the famous linear expenditure system (LES).  The non-unitary income elasticity

arises because the weights in (18) are functions of y.  Of course, it could be said this is a

roundabout way to obtain the LES, since it is straightforward from its indirect utility function.

It is also true that textbooks (e.g. Deaton & Muellbauer, 1980, p.145) often interpret the LES

as giving a consumer's budget shares as a weighted average of a 'rich' person's and a 'poor'

person's budget shares, although that is usually in the context of interpreting the iγ as

essential minimum purchased quantities and jj pγΣ  as 'subsistence' income, and that may be

an unnecessarily narrow interpretation given that formulae (2), (4) and (5) are all weighted

averages of budget shares.  However, the important suggestion from the derivation here is that

there may be other interesting non-homothetic demand systems obtainable by considering

weighted averages of the component demand systems.

A point concerning validity needs to be mentioned though.  Here 2U  is not of the form of

Section III and so the argument of footnote 1 showing convexity of the product utility could

not be relied on.  Of course, it is well known  the LES utility function can be shown to satisfy

validity conditions except perhaps at low incomes, but the moral is that having employed the
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combination formula for a product, validity may need further investigation.  A related

interpretation is that range of validity may change.  The demand systems following from

utilities (6) and (7) were valid, given the conditions on the iα and iγ , for all prices and

incomes, but (19) requires y > jj pγΣ .

For combination of utilities via (2) this difficulty does not arise.  The sum of the same utilities

gives
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which may be written
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showing that is it is a combination of the same components as (18), but with different weights

and hence somewhat different properties and elasticities.

However, there are more interesting possibilities.  Consider the combination of (7) and

∑ 
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The utility function 2U  itself leads to Houthakker's (1960) indirect addilog system (IAD)
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There are 2n – 1 independent parameters, since numerator and denominator can be divided by

any constant.  Again, however, we will define a new iγ as the previous one multiplied by

)1/( λλ − .  Employing (2) leads to the system
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and using (5) gives
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Both (21) and (22) are of course expressible as weighted sums of constant budget share and

IAD demand systems, differing in the weights, which are functions of prices and income.

Taking all 1=iβ  in (21) and (22) give (19) and (18) as special cases.

Again, combining (11) and (20) via (2) and (5) gives
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( )∑

∑







−−







+



















−

Σ
=

j

j

y
p

y
p

y
p

p
p

w
j

jj

i
i

ii
j

j
jj

ii

mi β

ββ

βγ

βγγ
φ
φ

11

12

2

. (24)

As before, there are special cases for all 1=iβ with (24) taking an LES type form

)(2
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+= .

The systems (21), (22), (23) and (24), are considerably more complicated than those of the

previous section.  All involve 3n – 1 parameters as the constraint 1=Σ jα  remains operative

in (21) and (22) and 1=Σ jφ  in (23) and (24).  Detailed assessment of their properties, ranges

of validity and value for modelling consumer expenditure or other data lies outside the scope

of this paper.  However, the demand  system (22) has been separately derived and examined

by Conniffe (2002).  It seems potentially very useful and can be seen as a generalisation of

the LES, which relaxes some of the well known inflexibilities of that system, while retaining

attractive features.  The other systems here, or indeed yet more that could have been derived,

may also have promise.  But perhaps enough has been presented to suggest the usefulness of

examining sums or products of indirect utility functions.
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