Dr Keefe Murphy

Mathematics and Statistics, Hamilton Institute

Lecturer

Logic House
130
(01) 708 4641

Biography

I am a statistician with primary research interests in developing methodologies for both supervised and unsupervised classification tasks involving complex, high-dimensional, mixed-type data, often in the presence of outliers and concomitant variables. Publications to date include work on Bayesian nonparametric mixtures of factor analysers, covariate-dependent parsimonious model-based clustering, distance-based clustering models for longitudinal categorical sequences, risk-stratification for multi-omic prostate cancer data, and many applications of statistical machine learning methods in the field of learning analytics.
  I am currently working on various extensions to the BART model, missing data modelling, multivariate count data, variable selection in mixtures-of-experts models, and variable importance in model-based clustering more generally. I also take a keen interest in the computational implementation of statistical models and have authored the R packages IMIFA, MoEClust, and MEDseq - all of which are available on CRAN - and contributed to several others.

Research Interests

I have a broad range of research interests in the fields of Statistics, Data Science, and Machine Learning including, but not limited to; mixture models, latent variable models, model-based clustering and classification, Bayesian nonparametrics, shrinkage priors, applications to high-dimensional, mixed-type data, computational statistics, dimension reduction, sequence analysis, missing data mechanisms, multivariate count data, tree-based methods, non-parametric regression, variable selection, model selection, and model aggregation. Most of the research projects I have worked on involved a non-trivial computation aspect and I take a keen interest in distributing software implementations of my novel methodologies.

Peer Reviewed Journal

Year Publication
2025 Prado, E.B.; Parnell, A.C.; Moral, R.A.; McJames, N.; O'Shea, A.; Murphy, K. (2025) 'Accounting for shared covariates in semiparametric Bayesian additive regression trees'. Annals of Applied Statistics, 19 (1):302-328. [DOI]
2025 Urbas, S.; Finucane, K.; Gormley, I.C.; Murphy, K. (2025) 'Contributed Discussion on Sparse Bayesian factor analysis when the number of factors is unknown by Frühwirth-Schnatter, S., Hosszejni, D., and Lopes, H.F'. Bayesian Analysis, 20 (1):213-344. [DOI]
2024 Maia, M.; Murphy, K.; Parnell, A.C. (2024) 'GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes'. Computational Statistics and Data Analysis, 190 . [Link] [DOI]
2024 Saqr, M.; López-Pernas, S.; Murphy, K. (2024) 'How group structure, members' interactions and teacher facilitation explain the emergence of roles in collaborative learning'. Learning and Individual Differences, 112 . [DOI]
2021 Murphy K.; Murphy T.B.; Piccarreta R.; Gormley I.C. (2021) 'Clustering longitudinal life-course sequences using mixtures of exponential-distance models'. Journal of the Royal Statistical Society. Series A, (Statistics in Society), 184 (4):1414-1451. [DOI] [Full-Text]
2020 Murphy K.; Murphy T.B. (2020) 'Gaussian parsimonious clustering models with covariates and a noise component'. Advances in Data Analysis and Classification, 14 (2):293-325. [DOI] [Full-Text]
2020 Murphy K.; Viroli C.; Gormley I.C. (2020) 'Infinite mixtures of infinite factor analysers'. Bayesian Analysis, 15 (3):937-963. [DOI] [Full-Text]
2020 Gilgunn, S.; Murphy, K.; Stöckmann, H.; Conroy, P.J.; Murphy, T.B.; Watson, R.W.G.; O'Kennedy, R.J.; Rudd, P.M.; Saldova, R. (2020) 'Glycosylation in Indolent, Significant and Aggressive Prostate Cancer by Automated High-Throughput N-Glycan Profiling'. International Journal of Molecular Sciences, 21 . [DOI] [Full-Text]
2020 Jalali A.; Foley, R.W.; Maweni, R.M.; Murphy, K.; Lundon, D.J.; Lynch, T.; Power, R.; O'Brien, F.; O'Malley, K.J.; Galvin, D.J.; Durkan, G.C.; Murphy, T.B.; Watson, R.W.G. (2020) 'A risk calculator to inform the need for a prostate biopsy: a rapid access clinic cohort'. BMC Medical Informatics and Decision Making, 20 (1). [DOI] [Full-Text]
2018 Murphy K.; Murphy T.B.; Boyce S.; Flynn L.; Gilgunn S.; O'Rourke, C.J.; Rooney, C.; Stöckmann, H.; Walsh, A.L.; Finn, S.; O'Kennedy, R.J.; O'Leary, J.; Pennington, S.R.; Perry, A.S.; Rudd, P.M.; Saldova, R.; Sheils, O.; Shields, D.C.; Watson, R.W.G. (2018) 'Integrating biomarkers across omic platforms: an approach to improve stratification of patients with indolent and aggressive prostate cancer'. Molecular Oncology, 12 (9). [DOI]
2017 Hanrahan K.; O'Neill, A.; Prencipe, M.; Bugler, J.; Murphy, L.; Fabre, A.; Puhr, M.; Culig, Z.; Murphy, K.; Watson, R.W.G. (2017) 'The role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer'. Molecular Oncology, 11 (3). [DOI]
2016 Foley, R.W.; Maweni, R.M.; Gorman, L.; Murphy, K.; Lundon, D.J.; Durkan, G.; Power, R.; O'Brien, F.; O'Malley, K.J.; Galvin, D.J.; Murphy, T.B.; Watson, R.W.G. (2016) 'European Randomised Study of Screening for Prostate Cancer (ERSPC) risk calculators significantly outperform the Prostate Cancer Prevention Trial (PCPT) 2.0 in the prediction of prostate cancer: a multi-institutional study'. BJU International, 118 (5). [DOI]
2016 Foley, R.W.; Gorman, L.; Sharifi, N.; Murphy, K.; Moore, H.; Tuzova, A.V.; Perry, A.S.; Murphy, T.B.; Lundon, D.J.; Watson, R.W.G. (2016) 'Improving multivariable prostate cancer risk assessment using the Prostate Health Index'. BJU International, 117 (3). [DOI]
2015 Foley, R.W.; Lundon, D.J.; Murphy, K.; Murphy, T.B.; Galvin, D.J.; Watson, R.W.G. (2015) 'Predicting prostate cancer: analysing the clinical efficacy of prostate cancer risk calculators in a referral population'. Irish Journal of Medical Science, 184 (3). [DOI]

Computer Program

Year Publication
2020 Murphy, K.; Murphy, T.B.; Piccarreta, R.; Gormley, I.C. (2020) MEDseq: Mixtures of Exponential-Distance Models with Covariates. [Computer Program]
2020 Murphy K.; Murphy T.B. (2020) MoEClust: Gaussian Parsimonious Clustering Models with Covariates and a Noise Component. [Computer Program]
2020 Murphy K.; Viroli C.; Gormley I.C. (2020) IMIFA: Infinite Mixtures of Infinite Factor Analysers and Related Models. [Computer Program]

Book Chapter

Year Publication
2024 Murphy, K.; López-Pernas, S.; Saqr, M. (2024) 'Dissimilarity-Based Cluster Analysis of Educational Data: A Comparative Tutorial Using R' In: Learning Analytics Methods and Tutorials: A Practical Guide Using R. Cham : Springer. https://doi.org/10.1007/978-3-031-54464-4_8
2024 Scrucca, L.; Saqr, M.; López-Pernas, S.; Murphy, K. (2024) 'An Introduction and R Tutorial to Model-Based Clustering in Education via Latent Profile Analysis' In: Learning Analytics Methods and Tutorials: A Practical Guide Using R. Cham : Springer. https://doi.org/10.1007/978-3-031-54464-4_9
2024 Saqr, M.; López-Pernas, S.; Helske, S.; Durand, M.; Murphy, K.; Studer, M.; Ritschard, G. (2024) 'Sequence Analysis in Education: Principles, Technique, and Tutorial with R' In: Learning Analytics Methods and Tutorials: A Practical Guide Using R. Cham : Springer. https://doi.org/10.1007/978-3-031-54464-4_10
2024 Helske, J.; Helske, S.; Saqr, S.; López-Pernas, S.; Murphy, K. (2024) 'A Modern Approach to Transition Analysis and Process Mining with Markov Models in Education' In: Learning Analytics Methods and Tutorials: A Practical Guide Using R. Cham : Springer. https://doi.org/10.1007/978-3-031-54464-4_12
2024 López-Pernas, S.; Saqr, M.; Helske, S.; Murphy, K. (2024) 'Multi-Channel Sequence Analysis in Educational Research: An Introduction and Tutorial with R' In: Learning Analytics Methods and Tutorials. Cham : Springer. https://doi.org/10.1007/978-3-031-54464-4_13
Certain data included herein are derived from the © Web of Science (2025) of Clarivate. All rights reserved.

Honors and Awards

Date Title Awarding Body
01/06/2020 Distinguished Dissertation Award The Classification Society

Committees

Committee Function From / To
Department of Mathematics and Statistics Course Committee Member 01/01/2023 -
Department of Mathematics and Statistics PR Committee Member 01/01/2024 -

Education

Start date Institution Qualification Subject
University College Dublin Doctor of Philosophy Statistics
University College Dublin Master of Science Statistics
University of Limerick Bachelor of Science Economics & Mathematics

Editorial / Academic Reviews

Amount Role From / To
Statistical Analysis and Data Mining Associate Editor 01/08/2024 -
Advances in Data Analysis and Classification Reviewer -
Annals of Applied Statistics Reviewer -
Australian and New Zealand Journal of Statistics Reviewer -
Bayesian Analysis Reviewer -
Communications in Statistics Part B: Simulation and Computation Reviewer -
Computational Statistics and Data Analysis Reviewer -
International Journal of Computer Applications in Technology Reviewer -
International Journal of Information and Education Technology Reviewer -
Journal of Classification Reviewer -
Journal of Computational and Graphical Statistics Reviewer -
Journal of Statistical Software Reviewer -
Methodology Reviewer -
Pattern Recognition Reviewer -
PLOS One Reviewer -
The R Journal Reviewer -
Scandinavian Journal of Statistics Reviewer -
Statistical Analysis and Data Mining Reviewer -
Statistics and Computing Reviewer -

Teaching Interests

I am currently lecturing modules on Advanced R Programming, Introduction to Data Science, and Nonparametric Statistics. Other courses I have previously taught include Design & Analysis of Experiments, Introduction to Statistics, Linear Models, Statistical Computing with R, Statistical Machine Learning, and Stochastic Processes.

Recent Students

Graduation date Name Degree
2024 Mateus Maia PhD